- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0010000001000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Przybocki, Benjamin (2)
-
Barrett, Clark (1)
-
Chiang, Judy Hsin-Hui (1)
-
Hoang, Anh_Trong Nam (1)
-
Kendall, Matthew (1)
-
Lynch, Ryan (1)
-
Nguyen, Son (1)
-
Toledo, Guilherme (1)
-
Xia, Janabel (1)
-
Zohar, Yoni (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
- Filter by Editor
-
-
Platzer, André (1)
-
Pradella, Matteo (1)
-
Rossi, Matteo (1)
-
Rozier, Kristin Yvonne (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Platzer, André; Rozier, Kristin Yvonne; Pradella, Matteo; Rossi, Matteo (Ed.)Abstract Stable infiniteness, strong finite witnessability, and smoothness are model-theoretic properties relevant to theory combination in satisfiability modulo theories. Theories that are strongly finitely witnessable and smooth are calledstrongly politeand can be effectively combined with other theories. Toledo, Zohar, and Barrett conjectured that stably infinite and strongly finitely witnessable theories are smooth and therefore strongly polite. They called counterexamples to this conjectureunicorn theories, as their existence seemed unlikely. We prove that, indeed, unicorns do not exist. We also prove versions of the Löwenheim–Skolem theorem and the Łoś–Vaught test for many-sorted logic.more » « less
-
Chiang, Judy Hsin-Hui; Hoang, Anh_Trong Nam; Kendall, Matthew; Lynch, Ryan; Nguyen, Son; Przybocki, Benjamin; Xia, Janabel (, Discrete Mathematics)
An official website of the United States government
